7 resultados para TLR

em Deakin Research Online - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cells [DCs] are potent antigen presenting cells [APC], which plays a vital role in immune system by detecting and capturing pathogens in the body. DCs perform a pivotal role in induction of T cell response. Regulation of immune response can be achieved by specific antigen [Ag] delivery to DCs. A delivery system that can efficiently target and present Ags to DCs for the purpose of anti-tumour activity is currently a topic of significant research interest. DCs are receiving attention due to their key role in anti cancer host response and due to their adjuvanic property in tumour vaccines. Role of toll like receptors [TLR] in innate immune system and their part in eventual stimulation of adaptive immunity is exploited to develop vaccines. TLR agonists in conjugation with vaccines are shown to increase therapeutic efficacy in some cases. TLRs also play a vital role in protecting the cornea from invading pathogens. Due to adverse effects in the treatment of ocular inflammations, cancer and in viral infections, an alternate approach such as the use of TLRs will solve the inquisitive question regarding side effects. The intended delivery is attained by the use of nanoparticles which in turn leads to prolonged half-life in the body. Co-delivery of Ags, TLRs and immunomodulators using nanoparticles has been demonstrated to elicit potent cellular immune responses and are currently under development of clinically applicable immunisations and vaccines.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Gram-negative bacterial peptidoglycan is specifically recognized by the host intracellular sensor NOD1, resulting in the generation of innate immune responses. Although epithelial cells are normally refractory to external stimulation with peptidoglycan, these cells have been shown to respond in a NOD1-dependent manner to Gram-negative pathogens that can either invade or secrete factors into host cells. In the present work, we report that Gram-negative bacteria can deliver peptidoglycan to cytosolic NOD1 in host cells via a novel mechanism involving outer membrane vesicles (OMVs). We purified OMVs from the Gram-negative mucosal pathogens: Helicobacter pylori, Pseudomonas aeruginosa and Neisseria gonorrhoea and demonstrated that these peptidoglycan containing OMVs upregulated NF-κB and NOD1-dependent responses in vitro. These OMVs entered epithelial cells through lipid rafts thereby inducing NOD1-dependent responses in vitro. Moreover, OMVs delivered intragastrically to mice-induced innate and adaptive immune responses via a NOD1-dependent but TLR-independent mechanism. Collectively, our findings identify OMVs as a generalized mechanism whereby Gram-negative bacteria deliver peptidoglycan to cytosolic NOD1. We propose that OMVs released by bacteria in vivo may promote inflammation and pathology in infected hosts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Membrane nanotubes (MNTs) are newly discovered cellular extensions that are either blind-ended or can connect widely separated cells. They have predominantly been investigated in cultured isolated cells, however, previously we were the first group to demonstrate the existence of these structures in vivo in intact mammalian tissues. We previously demonstrated the frequency of both cell–cell or bridging MNTs and blind-ended MNTs was greatest between major histocompatibility complex (MHC) class II+ cells during corneal injury or TLR ligand-mediated inflammation. The present study aimed to further explore the dynamics of MNT formation and their size, presence in another tissue, the dura mater, and response to stress factors and an active local viral infection of the murine cornea. Confocal live cell imaging of myeloid-derived cells in inflamed corneal explants from Cx3cr1GFP and CD11ceYFP transgenic mice revealed that MNTs form de novo at a rate of 15.5 μm/min. This observation contrasts with previous studies that demonstrated that in vitro these structures originate from cell–cell contacts. Conditions that promote formation of MNTs include inflammation in vivo and cell stress due to serum starvation ex vivo. Herpes simplex virus-1 infection did not cause a significant increase in MNT numbers in myeloid cells in the cornea above that observed in injury controls, confirming that corneal epithelium injury alone elicits MNT formation in vivo. These novel observations extend the currently limited understanding of MNTs in live mammalian tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Manifestations of viral infections can differ between women and men, and marked sex differences have been described in the course of HIV-1 disease. HIV-1-infected women tend to have lower viral loads early in HIV-1 infection but progress faster to AIDS for a given viral load than men. Here we show substantial sex differences in the response of plasmacytoid dendritic cells (pDCs) to HIV-1. pDCs derived from women produce markedly more interferon-alpha (IFN-alpha) in response to HIV-1-encoded Toll-like receptor 7 (TLR7) ligands than pDCs derived from men, resulting in stronger secondary activation of CD8(+) T cells. In line with these in vitro studies, treatment-naive women chronically infected with HIV-1 had considerably higher levels of CD8(+) T cell activation than men after adjusting for viral load. These data show that sex differences in TLR-mediated activation of pDCs may account for higher immune activation in women compared to men at a given HIV-1 viral load and provide a mechanism by which the same level of viral replication might result in faster HIV-1 disease progression in women compared to men. Modulation of the TLR7 pathway in pDCs may therefore represent a new approach to reduce HIV-1-associated pathology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The anti-inflammatory effect of a lipid extract from hard-shelled mussel (HMLE) on dextran sulphate sodium (DSS)-induced colitis in mice was investigated. Salicylazosulphapyridine (SASP) and different doses of HMLE were administered by gastric gavage. HMLE significantly attenuated DSS-induced colitis disease activity index scores, tissue damage, splenic enlargement and colon myeloperoxidase accumulation. In addition, HMLE improved colon oxidative stress and production and expression of anti-inflammatory cytokine, interleukin (IL)-10, while HMLE inhibited the abnormal productions and mRNA expressions of pro-inflammatory cytokines, namely tumour necrosis factor-α, IL-1β, and IL-6, as well as the expression of key molecules in the toll-like receptor (TLR)-4/nuclear factor (NF)-κB signalling pathway. These findings suggest that HMLE has an anti-inflammatory effect on DSS-induced colitis, equivalent to that of SASP, and this effect might be related to the regulation of inflammatory mediators and key molecules in the TLR-4/NF-κB pathway.